
Title: Is your Testing Effective and Efficient?

Author: Bhushan B. Gupta

Affiliation: Hewlett-Packard Company

Biographical Sketch:

Bhushan Gupta has 23 years of experience in software engineering, 13 of which have

been in the software industry. Currently a Program Manager/Test Lead in the RPS group,

at Hewlett-Packard, he joined the company as a software quality engineer in 1997. Since

then he has led his groups in product development lifecycles, development methodology

and execution processes, and software metrics for quality and software productivity.

As a change agent, Bhushan Gupta volunteers his time and energy for organizations that

promote software quality. He has been a Vice President, a Program Co-Chair, and a

Board Member of the Pacific Northwest Software Quality Conference. He offers a

workshop titled “Engineering Software Quality” at the Center for Professional

Development, OHSU, for software quality practitioners.

Bhushan Gupta has a MS degree in Computer Science from the New Mexico Institute of

Mining and Technology, Socorro, New Mexico, 1985.

Abstract

Adequate testing is much more difficult when your product involves multiple facets such

as software, hardware, Other Equipment Manufacturer (OEM) components, and industry

compliance including safety and environment. Test coordination is more complex as

there are multiple teams engaged in testing the product. It becomes increasingly difficult

to ensure that all facets of the product are tested and there is no unintended test effort

duplication.

The Retail Photo Solutions (RPS) group at Hewlett-Packard has developed a test

planning method termed “Test Landscape” that assures a high level of test effectiveness

and efficiency and yields a high quality product. It defines testing scope, identifies test

ownership, and tracks test coverage and status across multiple development stages and

quality attributes. The method involves identifying the quality attributes, such as

Functionality, Usability, Reliability, Installation/Deployment, Safety, and Regulatory,

that must be tested. These attributes form the horizontal test vector. To make sure that

the product components are adequately tested before they are integrated, a vertical test

vector representing development stages including Unit, Module, Component, System,

and Solution and Beyond is also established. The two vectors combined yield a test

matrix – the Test Landscape. The method is being used by the RPS group and has made

test management simpler and efficient, while also enabling management to have more

confidence in the testing process.

Introduction - Background and Challenges

The Retail Photo Solutions group at Hewlett-Packard develops solutions that enable the

consumer to produce memorabilia such as calendars, posters, and albums from their own

photographic work. The solution is comprised of:

 A software component that assembles images into the desired memorabilia format

using image input devices (scanners, kiosks, memory cards etc.)

 Printing devices both HP and non-HP

 Production equipment such as CD/DVD for archival.

This is a global business so the solution must be localized and internationalized. Being

global, it also has to comply with each country’s regulatory requirements. The solution

includes the OEM software and hardware components that are subject to the same

standards of quality as the in-house components. The software and hardware

development is co-located on multiple HP sites in North America and Europe.

This complex nature of the product makes its testing increasingly difficult. In particular

the group faces the following challenges:

 Avoiding testing an integrated system before its individual components are

sufficiently tested and stable

 Covering both the customer and the international regulatory perspective

 Optimization of overall testing to avoid test duplication

 Conducting the right testing at the right time in the development lifecycle, across the

various stages of integration form component to solution.

Relevant Definitions

The following definitions are relevant for the foundation of this work:

Effective Testing: The test plan and its execution assures a minimal high priority defects

found in the field

Efficient Testing: There is no unintended duplication of testing efforts

There are situations where some test duplication may be unavoidable. For example, a

user interface is included in two different platforms supported by the solution with a

slight variation. Both platforms will need testing, resulting in some duplication. We

came up with the test landscape concept and used it as the primary method for organizing

and communicating our test planning among the multiple involved groups.

Framework for the Test Landscape

The two vectors that define the test landscape are the product quality attributes and the

different levels at which these attributes must be tested during product development. The

quality attributes are the product characteristics in addition to functionality that a product

must posses to provide value to its users. These characteristics include but are not limited

to installation, usability, performance and form a sound basis for the product quality.

Gupta and Beckman [1] have discussed the prominent software quality attributes. The

following table lists the important attributes and their definition from the sources

highlighted in the table which the team used for this methodology:

Attribute Definition Source

Functionality The capacity of a solution to provide its

required functions under stated conditions

for a specified period of time

Webster Dictionary

Usability The extent to which a product can be used

by specified users to achieve specified goals

with effectiveness, efficiency and

satisfaction in a specified context of use

ISO 9241-11

Reliability The ability of a solution or component to

perform its required functions under stated

conditions for a specified period of time

IEEE Standard Computer

Dictionary, 1990

Installation The capability of the software product to be

installed in a specified environment

http://www.isi.edu/natural-l

anguage/mteval/html/222.ht

ml

Localization Means of adapting for non-native

environments, especially other nations and

cultures

http://en.wikipedia.org/wiki/I

nternationalization_and_loca

lization

Regulatory Legal restrictions promulgated by

government authority

http://en.wikipedia.org/wiki/I

nternationalization_and_loca

lization

Security Condition of being protected against danger

or loss

http://en.wikipedia.org/wiki/I

nternationalization_and_loca

lization

Compatibility Exist or function in the same system or

environment without mutual interference

http://en.wikipedia.org/wiki/I

nternationalization_and_loca

lization

Table 1. Quality Attributes Used to Define the Landscape for a Photo Kiosk

This work provided the initial framework for the landscape and we also added Safety

since it is relevant to the hardware devices. Generally the set of attributes that should be

included in defining this vector will vary from product to product and business needs and

should be carefully selected to get an optimized set. Wiegers [2] has provided a list of

non-functional software quality attributes with the usage guidelines.

The second vector in the Test Landscape is the time during the product development

when the testing should be conducted. This vector may vary depending upon the type of

product, software vs. hardware, development methodology, iterative vs. sequential, and

the specific shop practices followed by an organization The following diagram describes

the main elements of this vector for a typical waterfall software development lifecycle:

In this model integration testing happens at multiple levels as the development proceeds.

The development stages can be customized for a particular environment to make the

qualification more granular if desired. Craig and Jaskiel [3] and Kaner et al. [4] have

discussed various testing stages during software development. The granularity does

come at an added cost of qualification for the extra stages.

The two vectors, when combined together, result into the following Test Landscape:

 Functionality Usability Installation Localization

Components

Subsystem

System

Solution

Table 2. A Simple Test Landscape Showing Horizontal and Vertical Vectors

Our Experience

As discussed earlier, the RPS has a very complex product that includes software,

hardware, and the OEM products. In addition, the development is based in the USA,

Germany, and UK with each location having its own test team. Since the product is

marketed internationally it is important to qualify it against the regulatory requirements.

The development is primarily waterfall with multiple test-fix cycles after the

“functionality complete” milestone has been reached.

The solution components are tested by the individual development teams at different

levels i.e. subcomponent or unit, subsystem or module and system. Printing devices are

also individually qualified for performance, reliability, and regulatory as needed. Since

the teams are globally dispersed the testing is carried out in multiple places. A high level

of coordination is essential for a successful overall solution testing.

Components

Subsystem

System

Solution

Figure 1. Test Types during the Product Development Stages

Time in Development Cycle

The Quality and TCE (Total Customer Experience) director organized a taskforce to

develop a test strategy to assure that:

 The testing was effective with no high priority defects found in the field meaning

no test escape

 The testing was efficient to optimize the qualification cost

 The product had the intended quality measured against the release criteria.

The taskforce included stakeholders from development, quality assurance, custom

product engineering, service and support, regulatory, and human factors engineering.

Since the group consisted of development and test managers and leads from multiple test

areas a general discussion started around what attributes should be tested and who should

own what level of testing.

HP has well established test attributes and it was easy to create a basic attribute list that

included Functionality, Localization, Usability, Reliability, and Performance as listed in

Table 1. The subject matter experts from Service and Support and Regulatory brought in

their perspectives which led to the creation of a broader well rounded list of attributes.

An organization can build its own list of attributes that adequately characterizes the

product quality.

The group then started to discuss different stages in the in the development when these

attributes should be tested. Since the solution is made up of hardware, software and

OEM products, the levels had to represent all the stages involved in each development.

The OEM products could only be tested at the system level while the hardware and

software testing could begin as soon as a component development was complete. There

was no clear consensus on the stage names or definitions and the team struggled in

getting alignment on characterization of these stages. Finally an agreement was reached

to use the simple notion of levels (Level 1, Level 2 etc.) to match the development stages.

For example Level 1 represented the Unit/subcomponent, Level 2 the

module/subassemblies and so on and so forth. The equivalent of levels is shown in our

tables to avoid confusion.

The quality attributes and the test stages together provided the framework for the

landscape. We used the landscape table to assign and agree upon ownership of testing for

each attribute at each level. The group developed a landscape for each component

especially hardware and an overall landscape at the product level to provide efficient test

planning at all levels.

Table 3 shows a complete test landscape for a printing device that was a component of

the solution.

 Functionality Reliability Serviceability Performance Regulatory Safety Output

Quality

Subcomponents Dev. Team Dev. Team CPE Dev. Team NA Dev.

Team
Dev. Team

Component Dev. Team QA CPE QA + Dev.

Team
QA QA Dev. Team

System Dev. Team +

QA
QA CPE Dev. Team +

QA
QA QA Dev. Team

Solution QA UNKNOWN NA CPE NA NA CPE

Alpha CPE CPE CPE NA NA NA NA
Beta Retailer Retailer Supp UNKNOWN NA NA Supp
Acceptance Retailer Retailer Supp Supp NA NA Supp

Table 3. Test Ownership of a Printing Device

The abbreviations used in the table are:

Dev: Product Development

QA: Quality Assurance

Supp: Customer Support

CPE: Custom Product Engineering

NA: Not Applicable

Both Beta and Acceptance test stages are focused on testing on the retailer site for the end

customer use.

Some typical characteristics of the landscape during component development are:

 The Development Team has a heavy role to play in the beginning and their

involvement decreases as the component/product development matures. At the same

time, the involvement of other specialty teams increases as we move towards the final

product. This is often the case as the components are assembled and the solution

starts to exhibit end-product characteristics such as Usability, Performance that

require testing by subject matter experts.

 There may be unresolved areas of testing that still need to be finalized. They are

highlighted as UNKNOWN and can become potentially critical issues if not resolved

early in the program.

The same test landscape can also be used to communicate test status, as shown in Table

4. Once again the component is a printing device (same as in Table 3).

 Reliability Performance Regulatory

Subcomponents
Finisher QA – behind schedule Dev. Team + QA – behind schedule QA – on track

Engine QA – on track Dev. Team + QA – behind schedule QA – on track

Component

Printer QA – behind schedule Dev. Team + QA – behind schedule QA – on track

Table 4. Tracking Status for one of the Components of the Photo Kiosk Solution

Table 4 is a snapshot at a milestone in the product development lifecycle where the

component was being evaluated. The information was used as a part of the dashboard to

inform the upper management.

Table 5 represents the solution test landscape for the product.

 Functionality Reliability Serviceability Performance Regulatory Security Output

Quality

Subcomponents NA NA NA NA NA NA NA
Component NA NA NA NA NA NA NA
System NA NA NA NA NA NA NA
Solution CPE CPE UNKNOWN CPE NA UNKNOWN CPE

Alpha CPE CPE UNKNOWN CPE NA NA CPE

Beta SUPP SUPP SUPP SUPP SUPP SUPP SUPP

Acceptance Retailer Retailer Retailer Retailer Retailer Retailer Retailer

Table 5. Photo Kiosk Solution Test Landscape

The attributes at the levels prior to the solution level have been marked NA since testing

at those levels had already taken place during the component development and system

testing. For example, Table 4 shows that the Printing Device has been tested at all levels

and is now being included in the solution. The Regulatory testing was not shown since

the solution components subject to regulations have been tested at one more levels earlier

in the development.

Once again the Test Landscape revealed that there were some areas with missing test

ownership. The test landscape identified these gaps and raised awareness to the program

management teams. This helped us focus on the critical business needs and achieve the

desired level of quality and test effectiveness. Using the test landscape, we also

discovered that there was a fair amount of overlap between the system and the solution

testing. This was primarily due to the lack of clear definition of the two levels and lack

of clarity of the roles and responsibilities of the two teams involved in qualification. The

test landscape provided a clearly understandable framework which enabled the two

groups to align on what the solution testing must accomplish which is different than the

system testing. This led the solution team to consider typical use case scenarios such as

“Busy Mom” which was portrayed as some one who did not have time to read the

instructions and intuitively proceeded to produce her memorabilia. It resulted in an

effective user scenario testing which was not being performed earlier. Solution reliability

was also another area where testing improved.

Aligning Test Landscape with the Product Development:

To be effective, the test landscape must be designed very early in the development

lifecycle. The quality attributes should be determined immediately after the product use

cases have been established and the software system requirements are complete. This is

equivalent to the requirement definition phase of the waterfall development or the release

planning milestone of the agile development.

As the product development proceeds, the landscape must be reviewed and updated if

necessary at the various checkpoints and milestones. Our experience was less than

perfect with the landscape review. Some component teams proactively reviewed their

test landscape while others had to be reminded to complete this activity. There were

instances where the review was inadequate. By the time product was released, there was

a strong emphasis on the methodology and a better understanding of how it should be

utilized.

Benefits of Test Landscape

The Test Landscape has multiple benefits that contribute to a quality product without any

additional cost. The following section discusses these benefits in detail.

Test Effectiveness

The landscape builds the test effectiveness by making sure that each applicable quality

attribute is tested at an appropriate time during product development thereby providing

test coverage from the unit test to the solution test. An example would be to test the

performance at component, subsystem, system, and solution level to achieve the intended

solution performance. Early testing and defect removal leads to a lower development

cost and a superior quality product as the longer a defect stays in the system the more

expensive it becomes to fix it [5, 6].

 Test Efficiency

Establishing early ownership and clear definition of each test area eliminates duplication

of testing, establishes clear roles and responsibilities, and provides a mechanism where

testing effort is well understood and is not an afterthought.

Test Coordination

The Test Landscape, after having determined the important critical test areas, can provide

effective test coordination to balance resources, assigning testing tasks to appropriate

teams, and placing mechanisms in place to analyze test progress and test results.

 Scalability

The test landscape is scalable from the component to subsystem, to system and all the

way up to the solution level. Depending upon the scope of the product, both the quality

attributes and the testing stages can be altered to achieve effective testing.

Customization

The user of the landscape has the liberty of focusing on what is most important to their

environment. At times, especially when breaking out into new markets, the functionality

is of paramount importance while other quality attributes may not play such an important

role. For RPS product it was important to provide excellent usability so that a novice

user from the street can get his/her memorabilia while high performance was less critical.

Status Reporting

At every checkpoint or milestone during the product development, the landscape provides

a mechanism to track the testing status and thus evaluate the product quality and any

schedule risks. At the beginning of the product the landscape can be used to establish the

ownership and then as the product development moves along, to evaluate if the intended

testing has been performed or not. If, for some reason, the planned testing could not be

achieved, a risk analysis can be carried out and the mitigation plans can be put into place.

Conclusion

It all comes down to product quality within the well known constraints – scope, schedule,

and resources. Our experience shows that use of the Test Landscape in test planning

contributes to the higher product quality, shortens the schedule and optimizes the testing

resources. The higher product quality is achieved by testing all the relevant product

attributes based upon business needs at the right time in the product development.

Identifying and removing unintended duplication contributes to both lower cost and

shorter schedule. In most cases testing is the last activity in the product development and

is on a critical path. Establishing the testing gaps early in the lifecycle and along the

product development helps risk mitigation and potential schedule slip especially in the

large organization where each group is focusing on a component or a subsystem.

Acknowledgement

The author would like to recognize the RPS Quality and TCE director, Lee Mason and

the members of the taskforce, Amy Battles, David Boal, Tim Dummer, Bernardo

Gutierrez, Rick Johnson, Shelly Reasoner, Todd Walker, and Wayne Westly for their

enormous contribution in the development of the Test Landscape concept and their

support for its adoption by the RPS Group at Hewlett-Packard.

References:

1. Gupta, Bhushan B. and Beckman, Orhan Ph. D., Quantifying Software Quality –

Making Informed Decisions, Pacific Northwest Software Quality Conference,

Portland, Oregon, 2006

2. Wiegers, Karl E., Software Requirements, 2nd Edition , Ch. 12, Page 216, Microsoft

Press, ISBN 0-7356-1879-8

3. Craig, Rick D. and Jaskiel, Stefan P., Systematic Software Testing, Artech House,

2002, ISBN 1580535089, 9781580535083

4. Kaner, Cem, Falk, Jack and Nguyen, Hung Quoc, Testing Computer Software, 2nd

Edition, ISBN: 0-442-01361-2

5. Boehm, B. and Basili, V., "Software Defect Reduction Top 10 List," IEEE Computer,

IEEE Computer Society, Vol. 34, No. 1, January 2001, pp. 135-137.

6. Cigital, Case Study: Finding Defects Early Yields Enormous Savings,

http://www.cigital.com/solutions/roi-cs2.php

